MULTIVARIATE BAYES REGRESSION MODELS FOR SMOOTHING OF COLOR IMAGES
نویسندگان
چکیده
منابع مشابه
the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)
هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...
15 صفحه اولOn empirical Bayes estimation of multivariate regression coefficient
We investigate the empirical Bayes estimation problem of multivariate regression coefficients under squared error loss function. In particular, we consider the regression model Y = Xβ+ ε, where Y is an m-vector of observations, X is a known m× k matrix, β is an unknown k-vector, and ε is anm-vector of unobservable random variables. The problem is squared error loss estimation of β based on some...
متن کاملMultivariate Functional Regression Models for Epistasis Analysis
To date, most genetic analyses of phenotypes have focused on analyzing single traits or, analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power, and hold the key to understanding the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex tra...
متن کاملVariable Selection for Multivariate Logistic Regression Models
In this paper, we use multivariate logistic regression models to incorporate correlation among binary response data. Our objective is to develop a variable subset selection procedure to identify important covariates in predicting correlated binary responses using a Bayesian approach. In order to incorporate available prior information, we propose a class of informative prior distributions on th...
متن کاملComponent Selection and Smoothing in Multivariate Nonparametric Regression
We propose a new method for model selection and model fitting in multivariate nonparametric regression models, in the framework of smoothing spline ANOVA. The “COSSO” is a method of regularization with the penalty functional being the sum of component norms, instead of the squared norm employed in the traditional smoothing spline method. The COSSO provides a unified framework for several recent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Japanese Society of Computational Statistics
سال: 1998
ISSN: 0915-2350,1881-1337
DOI: 10.5183/jjscs1988.11.55